Papers & Publications Involving CorTec Products

Our products are involved in research and development projects worldwide. Following a list of papers published by our customers.
If you know of a paper that is not listed here we are happy to receive this information at info@cortec-neuro.com

Human-relevant near-organ neuromodulation of the immune system via the splenic nerve.

Donegá, Matteo, et al.; PNAS 118.20 (2021).

Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation.

Cuttaz, Estelle A., et al.; Advanced Science (2021): 2004033.

A Software Tool for the Real-Time in Vivo Evaluation of Neural Electrodes’ Selectivity.

Strauss, Ivo, et al.; 10th International IEEE/EMBS Conference on Neural Engineering (NER) (2021).

Restoring tactile sensation using a triboelectric nanogenerator.

Shlomy, Iftach, et al.; ACS Nano (2021).

In-vivo application of low frequency alternating currents on porcine cervical vagus nerve evokes reversible nerve conduction block.

Muzquiz, Maria I., et al.; Bioelectronic Medicine 7.9 (2021).

Implanted Nerve Electrical Stimulation allows to Selectively Restore Hand and Forearm Movements in Patients with a Complete Tetraplegia.

Tigra, Wafa, et al.; Journal of NeuroEngineering and Rehabilitation volume 17, Article number: 66 (2020).

Sensory pudendal nerve stimulation increases bladder capacity through sympathetic mechanisms in cyclophosphamide‐induced cystitis rats.

Gonzalez, Gril; Neurourology and Urodynamics 38.1 (2019): 135-143.

Optogenetic activation of fiber-specific compound action potentials in the mouse vagus nerve.

Téa Tsaava, Adam M. Kressel et al.; 9th International IEEE EMBS Conference on Neural Engineering, San Francisco, CA, USA, March 20 – 23 , 2019
 

Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography (EIT).

Enrico Ravagli et al.; Physiological Measurement 2019.

Feasibility of kilohertz frequency alternating current neuromodulation of carotid sinus nerve activity in the pig.

Cathrine T. Fjordbakk et al.; Scientific Reports 9, 18136 (2019).

An impedance matching algorithm for common-mode interference removal in vagus nerve recordings.

Todd J. Levy et al.; Journal of Neuroscience Methods, 330, 2019.

Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes.

Mélanie Guyot et al.; Nature Biotechnology 2019.

Exploring selective neural electrical stimulation for upper limb functions restoration.

W. Tigra, David Guiraud, David Andreu, Bertrand Coulet, Anthony Gelis, Charles Fattal, Pawel Maciejasz, Chloé Picq, Olivier Rossel, Jacques Teissier, Christine Azevedo Coste; European Journalf of Translational Myology 2016 26(2), 161-164.

Apical splenic nerve electrical stimulation discloses an anti-inflammatory pathway relying on adrenergic and nicotinic receptors in myeloid cells.

Guyot, Mélanie et al.; Brain, Behaviour, and Immunity 8 (2019) 238-246.

Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity.

Masi, Emiliy Battinelli et al.; Bioelectronic Medicine (2019) 5:9.

Miniature electroparticle-cuff for wireless peripheral neuromodulation.

Hernandez-Reynoso, Ana G. et al.; J. Neural Eng. 2019 16 046002.

A neural circuit for gut-induced reward.

Han, Wenfei, et al.; Cell 175.3 (2018): 665-678.

A wrappable microwire electrode for awake, chronic interfacing with small diameter autonomic peripheral nerves.

Falcone, Jessica D., et al.; bioRxiv(2018): 402925.

Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings.

Koh, Ryan GL, Adrian I. Nachman, and Jose Zariffa.; bioRxiv(2018): 469874.

Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

Zanos, Theodorsos P., et al; PNAS, vol. 115, no. 21, E4851 (2018).

Standardization of methods to record Vagus nerve activity in mice.

Silverman, Harold A., et al.; Bioelectronic Medicine 4.1 (2018): 3.

A Multi-Sensor and Parallel Processing SoC for Miniaturized Medical Instrumentation

Schoenle, P., et al.; in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 2076-2087, July 2018.

Stimulation of the sensory pudendal nerve increases bladder capacity in the rat. 

Hokanson, James A., et al.; American Journal of Physiology-Renal Physiology 314.4 (2017): F543-F550.

Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model.

Somann, Jesse Paul, et al;  Journal of neural engineering (2017).

A multi-sensor and parallel processing SoC for wearable and implantable telemetry systems.

Schoenle, P., et al.; ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference. IEEE, 2017.

Modulation of Calcitonin, Parathyroid Hormone, and Thyroid Hormone Secretion by Electrical Stimulation of Sympathetic and Parasympathetic Nerves in Anesthetized Rats.

Hotta, Harumi, et al.; Frontiers in neuroscience 11 (2017): 375.

The effects of neuromodulation in a novel obese-prone rat model of detrusor underactivity.

Gonzalez, Eric J., and Warren M. Grill; American Journal of Physiology-Renal Physiology (2017): F815-F825.

Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes.

Sacramento, Joana F., et al.; Diabetologia (2017): 1-11.

High-frequency electrical modulation of the superior ovarian nerve as a treatment of polycystic ovary syndrome in the rat.

Pikov, Victor X., Arun Sridhar, and Hernan E. Dr Lara; Frontiers in Physiology 9 (2018): 459.

Stimulation of the Pelvic Nerve Increases Bladder Capacity in the Prostaglandin E2 Rat Model of Overactive Bladder.

Langdale, Christopher L., et al.; American Journal of Physiology-Renal Physiology (2017): ajprenal-00116.

Spatial and activity-dependent catecholamine release in rat adrenal medulla under native neuronal stimulation.

Kyle Wolf, Georgy Zarkua, Shyue‐An Chan, Arun Sridhar, Corey Smith; Physiological Reports Vol. 4, Iss. 27 (2016 ), 1-13.

Phasic activation of the external urethral sphincter increases voiding efficiency in the rat and the cat.

Christopher L. Langsdale, Warren M. Grill; Experimental Neurology 285 (Pt B) 2016 Nov, 173-181.

Cytokine-specific Neurograms In the Sensory Nerve.

Benjamin E. Steinberg, Harold A Silverman, Sergio Robbiati, Manoj K Gunasekaran, Téa Tsaava, Emily Battinelli, Andrew Stiegler, Chad E Bouton, Sangeeta S Chavan, Kevin J Tracey, Patricio T Huerta ; Bioelectronic Medicine 2016, 7-17.

Conductive hydrogel electrodes for delivery of long-term high frequency pulses.

Staples, Naomi A., et al.; Frontiers in Neuroscience 11 (2017): 748.

A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.

Lissandrello, C. A., et al.; Journal of neural engineering 14.3 (2017): 036006.

Unsupervised machine learning can delineate central sulcus by using the spatiotemporal characteristic of somatosensory evoked potentials.

Asman, Priscella, et al.; Journal of Neural Engineering 18.4 (2021)

Epidural and transcutaneous spinal cord stimulation facilitates descending inputs to upper-limb motoneurons in monkeys.

Guiho, Thomas, et al.; Journal of Neural Engineering 18.4 (2021)

Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable.

John, Sam E. et al.; Scientific Reports (2018) 8:8427.

A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.

Romanelli, Pantaleo et al.; J Neurosurg May 11, 2018.

In vivo impedance characterization of cortical recording electrodes shows dependence on electrode location and size.

John SE, et al.; IEEE Trans Biomed Eng. 2018 Jul 10.

Characterization of Hand Clenching in Human Sensorimotor Cortex Using High-, and Ultra-High Frequency Band Modulations of Electrocorticogram.

Jiang, Tianxiao, et al.; Frontiers in Neuroscience 12 (2018): 110.

Mapping the fine structure of cortical activity with different micro ECoG electrode array geometries.

Xi Wang et al 2017; J. Neural Eng. 14 056004.

Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

Thomas J Oxley,  Nicholas L Opie, Sam E John, Gil S Rind, Stephen M Ronayne, Tracey L Wheeler, Jack W Judy et al.; Nature Biology 34 (2016), 320–327.

In vitro assessment of long-term reliability of low-cost μΕCoG arrays.

Palopoli-Trojani, Kay, et al.; Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE, 2016.

A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

Gilmour, Aaron D., et al.; Biomaterials 91 (2016): 23-43.

Gierthmuehlen M, Wang X, Gkogkidis A, et al. Mapping of sheep sensory cortex with a novel microelectrocorticography gridJ Comp Neurol. 2014;522(16):3590-3608. doi:10.1002/cne.23631

Kohler, F. et al. (2017) ‘Closed-loop interaction with the cerebral cortex: a review of wireless implant technology§’, Brain-Computer Interfaces, 4(3), pp. 146–154. doi: 10.1080/2326263X.2017.1338011.

Gkogkidis, C. A. et al. (2017) ‘Closed-loop interaction with the cerebral cortex using a novel micro-ECoG-based implant: the impact of beta vs. gamma stimulation frequencies on cortico-cortical spectral responses*’, Brain-Computer Interfaces, 4(4), pp. 214–224. doi: 10.1080/2326263X.2017.1381829.

Casimo K, Levinson LH, Zanos S, et al. An interspecies comparative study of invasive electrophysiological functional connectivity. Brain Behav. 2017;7(12):e00863. Published 2017 Nov 22. doi:10.1002/brb3.863

Akinin, A., Paul, A., Wang, J., Buccino, A., Cauwenberghs, G. (2020). Biopotential Measurements and Electrodes. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_2

Datta-Chaudhuri, T., Zanos, T., Chang, E.H. et al. The Fourth Bioelectronic Medicine Summit “Technology Targeting Molecular Mechanisms”: current progress, challenges, and charting the future. Bioelectron Med 7, 7 (2021). https://doi.org/10.1186/s42234-021-00068-6

PO113 / #853 BRAIN INTERCHANGE BCI NEURAL INTERFACING SYSTEM: NEURAL RECORDING AND STIMULATION USING MICRO-ECOG AND DBS ELECTRODES IN SHEEP, Gkogkidis, C. Alexis et al. Neuromodulation, Volume 25, Issue 7, S249 – S250

Schalk, Gerwin et al. “Toward a fully implantable ecosystem for adaptive neuromodulation in humans: Preliminary experience with the CorTec BrainInterchange device in a canine model.” Frontiers in neuroscience vol. 16 932782. 19 Dec. 2022, doi:10.3389/fnins.2022.932782

H. Cho, J. Ojemann and J. Herron, “Open Mind Neuromodulation Interface for the CorTec Brain Interchange (OMNI-BIC): an investigational distributed research platform for next-generation clinical neuromodulation research,” 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), Baltimore, MD, USA, 2023, pp. 1-6, doi: 10.1109/NER52421.2023.10123808.

Ayyoubi, A.H., Fazli Besheli, B., Quach, M.M. et al. Benchmarking signal quality and spatiotemporal distribution of interictal spikes in prolonged human iEEG recordings using CorTec wireless brain interchange. Sci Rep 14, 2652 (2024). https://doi.org/10.1038/s41598-024-52487-5

Kai J. Miller et al. Bred for affection: The canine anterior ectosylvian gyrus responds selectively to social reinforcement 
 
Cho H, Benjaber M, Alexis Gkogkidis C, et al. Development and Evaluation of a Real-Time Phase-Triggered Stimulation Algorithm for the CorTec Brain Interchange. IEEE Trans Neural Syst Rehabil Eng. 2024;32:3625-3635. doi:10.1109/TNSRE.2024.3459801
 
Cho, Hanbin et al. “Open Mind Neuromodulation Interface for the CorTec Brain Interchange (OMNI-BIC): an investigational distributed research platform for next-generation clinical neuromodulation research.” International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering vol. 2023 (2023): 10.1109/ner52421.2023.10123808. doi:10.1109/ner52421.2023.10123808

Get a Quote

We’re happy to help you realize your next project. Whether it is a complete implantable system design, an electrode or another component.

Please fill out the form below and our sales team will be in contact with you shortly.

SPECIFICATIONS

FEATURE 

Recording channels 

Sampling rate 

Sampling dynamic range 

High pass filter cut-off 

Low pass filter cut-off 

Amplifier band pass gain 

Band pass roll-off 

Reference


Stimulation 

Stimulation channels 

Current 

Current source 

Pulse width 

Power supply 

Wireless data transmission 

Closed Loop latency

VALUE

32 

1 kHz 

16 bit (74 nV smallest increment) 

ca. 2 Hz 

325 Hz 

Adjustable: 100-750 

20 dB/dec 

Any (subset) of the recording channels selectable by software or one dedicated hard-wired additional contact 

Current-controlled, biphasic, rectangular, asymmetric stimulus pulses (cathodic amplitude with pulse width followed by an anodic counter pulse of 1/4x amplitude and 4x pulse width) 

 32 

Max. -6 mA / +1.5 mA (24 µA increments) within

 compliance voltage range of -11 V to +5 V 

Can be directed to any of the 32 electrode contacts 

Negative phase: 10 µs – 2,500 µs

Wireless inductive, 120-140 kHz

Bi-directional, radio frequency in 2400-2483.5 MHz band ≤ 40 ms