Papers & Publications Involving CorTec Products
Our products are involved in research and development projects worldwide. Following a list of papers published by our customers.
If you know of a paper that is not listed here we are happy to receive this information at info@cortec-neuro.com
Yan, T., et al.; Frontiers in Neurology, 16, 1515986, (2025).
Rossetti, Nicolo, et al.; bioRxiv (2024).
Maurer, Joachim T., et al.; Journal of Applied Physiology (2024).
Time series classification of multi-channel nerve cuff recordings using deep learning
Gill, Aseem & Zariffa, Jose; PLoS ONE 19(3): e0299271 (2024).
A soft, scalable and adaptable multi-contact cuff electrode for targeted peripheral nerve modulation
Paggi, Valentina, et al.; Bioelectron Med 10, 6 (2024).
Miranda, Jason, et al.; IEEE Open Journal of Engineering in Medicine and Biology (2024).
Thompson, Nicole, et al.; bioRxiv (2024).
Jayaprakash, Naveen, et al; bioRxiv (2022): 484-506.
Coste, C.A., William, L., Fonseca, L., et al.; scientifice reports 12, 16189 (2022).
Organ-and function-specific anatomical organization and bioelectronic modulation of the vagus nerve.
Jayaprakash, Naveen, et al; bioRxiv (2022).
Simplifying the hardware requirements for fast neural EIT of peripheral nerves
Ravagli, Enrico, et al.; IPEM (2022).
Role of Na V 1.7 in action potential conduction along human bronchial vagal afferent C-fibres
Kollarik, Marian, et al.; British Journal of Pharmacology, 1–10 (2021).
Human-relevant near-organ neuromodulation of the immune system via the splenic nerve.
Donegá, Matteo, et al.; PNAS 118.20 (2021).
Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation.
Cuttaz, Estelle A., et al.; Advanced Science (2021): 2004033.
A Software Tool for the Real-Time in Vivo Evaluation of Neural Electrodes’ Selectivity.
Strauss, Ivo, et al.; 10th International IEEE/EMBS Conference on Neural Engineering (NER) (2021).
Restoring tactile sensation using a triboelectric nanogenerator.
Shlomy, Iftach, et al.; ACS Nano (2021).
Muzquiz, Maria I., et al.; Bioelectronic Medicine 7.9 (2021).
Tigra, Wafa, et al.; Journal of NeuroEngineering and Rehabilitation volume 17, Article number: 66 (2020).
Gonzalez, Gril; Neurourology and Urodynamics 38.1 (2019): 135-143.
Optogenetic activation of fiber-specific compound action potentials in the mouse vagus nerve.
Enrico Ravagli et al.; Physiological Measurement 2019.
Cathrine T. Fjordbakk et al.; Scientific Reports 9, 18136 (2019).
An impedance matching algorithm for common-mode interference removal in vagus nerve recordings.
Todd J. Levy et al.; Journal of Neuroscience Methods, 330, 2019.
Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes.
Mélanie Guyot et al.; Nature Biotechnology 2019.
Exploring selective neural electrical stimulation for upper limb functions restoration.
W. Tigra, David Guiraud, David Andreu, Bertrand Coulet, Anthony Gelis, Charles Fattal, Pawel Maciejasz, Chloé Picq, Olivier Rossel, Jacques Teissier, Christine Azevedo Coste; European Journalf of Translational Myology 2016 26(2), 161-164.
Guyot, Mélanie et al.; Brain, Behaviour, and Immunity 8 (2019) 238-246.
Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity.
Masi, Emiliy Battinelli et al.; Bioelectronic Medicine (2019) 5:9.
Miniature electroparticle-cuff for wireless peripheral neuromodulation.
Hernandez-Reynoso, Ana G. et al.; J. Neural Eng. 2019 16 046002.
A neural circuit for gut-induced reward.
Han, Wenfei, et al.; Cell 175.3 (2018): 665-678.
Falcone, Jessica D., et al.; bioRxiv(2018): 402925.
Koh, Ryan GL, Adrian I. Nachman, and Jose Zariffa.; bioRxiv(2018): 469874.
Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.
Zanos, Theodorsos P., et al; PNAS, vol. 115, no. 21, E4851 (2018).
Standardization of methods to record Vagus nerve activity in mice.
Silverman, Harold A., et al.; Bioelectronic Medicine 4.1 (2018): 3.
A Multi-Sensor and Parallel Processing SoC for Miniaturized Medical Instrumentation
Schoenle, P., et al.; in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 2076-2087, July 2018.
Stimulation of the sensory pudendal nerve increases bladder capacity in the rat.
Hokanson, James A., et al.; American Journal of Physiology-Renal Physiology 314.4 (2017): F543-F550.
Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model.
Somann, Jesse Paul, et al; Journal of neural engineering (2017).
A multi-sensor and parallel processing SoC for wearable and implantable telemetry systems.
Schoenle, P., et al.; ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference. IEEE, 2017.
Hotta, Harumi, et al.; Frontiers in neuroscience 11 (2017): 375.
The effects of neuromodulation in a novel obese-prone rat model of detrusor underactivity.
Gonzalez, Eric J., and Warren M. Grill; American Journal of Physiology-Renal Physiology (2017): F815-F825.
Sacramento, Joana F., et al.; Diabetologia (2017): 1-11.
Pikov, Victor X., Arun Sridhar, and Hernan E. Dr Lara; Frontiers in Physiology 9 (2018): 459.
Langdale, Christopher L., et al.; American Journal of Physiology-Renal Physiology (2017): ajprenal-00116.
Kyle Wolf, Georgy Zarkua, Shyue‐An Chan, Arun Sridhar, Corey Smith; Physiological Reports Vol. 4, Iss. 27 (2016 ), 1-13.
Christopher L. Langsdale, Warren M. Grill; Experimental Neurology 285 (Pt B) 2016 Nov, 173-181.
Cytokine-specific Neurograms In the Sensory Nerve.
Benjamin E. Steinberg, Harold A Silverman, Sergio Robbiati, Manoj K Gunasekaran, Téa Tsaava, Emily Battinelli, Andrew Stiegler, Chad E Bouton, Sangeeta S Chavan, Kevin J Tracey, Patricio T Huerta ; Bioelectronic Medicine 2016, 7-17.
Conductive hydrogel electrodes for delivery of long-term high frequency pulses.
Staples, Naomi A., et al.; Frontiers in Neuroscience 11 (2017): 748.
A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.
Lissandrello, C. A., et al.; Journal of neural engineering 14.3 (2017): 036006.
Mapping of the central sulcus using non-invasive ultra-high-density brain recordings
Schreiner, Leonhard et al; Scientific Reports (2024).
Asman, Priscella, et al.; SpringerBriefs in Electrical and Computer Engineering. Springer, Cham, (2024).
Asman, Priscella, et al.; Clinical Neurophysiolgy 145 (2023): 1-10.
Asman, Priscella, et al.; 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, (2022).
Guiho, Thomas, et al.; Journal of Neural Engineering 18.4, (2021).
John, Sam E. et al.; Scientific Reports (2018) 8:8427.
Romanelli, Pantaleo et al.; J Neurosurg May 11, 2018.
John SE, et al.; IEEE Trans Biomed Eng. 2018 Jul 10.
Jiang, Tianxiao, et al.; Frontiers in Neuroscience 12 (2018): 110.
Xi Wang et al 2017; J. Neural Eng. 14 056004.
Thomas J Oxley, Nicholas L Opie, Sam E John, Gil S Rind, Stephen M Ronayne, Tracey L Wheeler, Jack W Judy et al.; Nature Biology 34 (2016), 320–327.
In vitro assessment of long-term reliability of low-cost μΕCoG arrays.
Palopoli-Trojani, Kay, et al.; Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE, 2016.
Gilmour, Aaron D., et al.; Biomaterials 91 (2016): 23-43.
van Maren, Ellen, et al. Neurology 102.12 (2024): e209428 (2024).
Ayyoubi, A.H., Fazli Besheli, B., Quach, M.M. et al., Sci Rep 14, 2652 (2024).
Schalk, Gerwin et al., Frontiers in neuroscience vol. 16 932782. 19 Dec. 2022.
Gkogkidis, C. Alexis et al. Neuromodulation, Volume 25, Issue 7, S249 – S250; PO113 / #853
Datta-Chaudhuri, T., Zanos, T., Chang, E.H. et al., Bioelectron Med 7, 7 (2021).
Biopotential Measurements and Electrodes.
Akinin, A., Paul, A., Wang, J., Buccino, A., Cauwenberghs, G. (2020). In: He, B. (eds) Neural Engineering. Springer, Cham.
An interspecies comparative study of invasive electrophysiological functional connectivity.
Casimo K, Levinson LH, Zanos S, et al., Brain Behav. 2017; 7(12):e00863. Published 2017 Nov 22.
Gkogkidis, C. A. et al. (2017), Brain-Computer Interfaces, 4(4), pp. 214–224.
‘Closed-loop interaction with the cerebral cortex: a review of wireless implant technology§’.
Kohler, F. et al. (2017) Brain-Computer Interfaces, 4(3), pp. 146–154.
Mapping of sheep sensory cortex with a novel microelectrocorticography grid.
Gierthmuehlen M, Wang X, Gkogkidis A, et al. J Comp Neurol. 2014;522(16):3590-3608.
Electrocorticography Workshop.
Schalk, Gerwin, and Health Research, Inc. at Wadsworth Menands United States, (2016): 0014.